

Axial Piston Fixed Pump A2FO

RE 91401/06.2012 1/34 Replaces: 03.08

Series 6 Size 5 10 to 200 250 to 1000 Open circuit

Nominal pressure/Maximum pressure 315/350 bar 400/450 bar 350/400 bar

Contents	
Ordering code for standard program	2
Technical data	4
Dimensions size 5	11
Dimensions sizes 10, 12, 16	12
Dimensions sizes 23, 28, 32	14
Dimensions size 45	16
Dimensions sizes 56, 63	18
Dimensions sizes 80, 90	20
Dimensions sizes 107, 125	22
Dimensions sizes 160, 180	24
Dimensions size 200	26
Dimensions size 250	27
Dimensions size 355	28
Dimensions size 500	29
Dimensions size 710	30
Dimensions size 1000	31
Installation instructions	32
General instructions	34

Features

 Fixed pump with axial tapered piston rotary group of
bent-axis design, for hydrostatic drives in an open circuit

- For use in mobile and stationary applications
- The flow is proportional to the drive speed and displacement
- The drive shaft bearings are designed for the bearing service life requirements usually encountered in these areas
- High power density
- Small dimensions
- High total efficiency
- Economical design
- One-piece tapered piston with piston rings for sealing

Ordering code for standard program

	A2F			0			/		6						-		V						
0	1 02	0	3	04	05	5			06		07		08				09		10		11	12	13
	Hydraulic fl	uid																					
	Mineral oil a	and H	IFD. HF	D for	sizes	s 25	0 to	1000) onl	v in d	comb	oinati	on w	vith l	ona-	life b	earin	nas "	L" (v	vitho	ut cod	le)	
01	HFB. HFC	hvdra	aulic flu	id					Size	s 5 t	to 20)0 (w	vithou	ut co	de)			3-					
	, e								Size	s 25	i0 to	100	0 (or	nlv in	con	bina	tion	with	lona	-life	bearin	as "L ")	E-
	Axial piston	unit							0.20	<u> </u>			- (0.	<u></u>								<u> 90 - 7</u>	
02	Bent-axis de	esigr	n, fixed																				A2F
	Drive shaft	bear	ing												5	to 20	00	250) to {	500	710 t	o 1000	-
00	Standard b	earin	g (witho	out co	de)											•			•			-	
03	Long-life be	aring	9													-			٠			•	L
	Onoroting r	node																					
04			; it																				
04																							
	Sizes (NG)				_						_												-
05	Geometric	displ	acemer	it, see	table	e of v	value	s on	pag	e 7	r—												
			5 10	0 12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250	355	500 7	10 1000	2
	Series																						
06																							6
	Index																						
																NG1	0 to	180					1
07																NG2	200						3
																NG5	i anc	250	D to ⁻	1000)		0
	Directions	fra	ation																				
	Viewed on o	drive	shaft													cloc	wise	<u>م</u>					R
08			onait														ter-c	- Lock	wise	<u> </u>			
																ooui				,			
	Seals				-																		
09	FKM (fluor-	caou	tchouc)																				V
	Drive shafts	6		5	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180	200	250 1	to 1000	
	Splined sha	ſť		-	•	•		•	•	•	-	•	•	•	•	•	•	•	•	•		-	Α
	DIN 5480			-	•	•	-	•	٠	-	•	•	-	•	-	•	-	•	-	-		•	Z
10	Parallel key	ed sł	naft	•	•				•	•	-	•		•	•		•			•		-	В
	DIN 6885			-	•	•	-	•	•	-	•	•	-	•	-	•	-	•	-	-		•	Р
	Conical sha	lft ¹⁾			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	C
	Mounting fl	ange	s															5	to 2	50	355 1	to 1000	
11	ISO 3019-2	2	4-hole																•			-	В
			8-hole		_														-			•	Н

 \bullet = Available

O = On request -=

– = Not available

= Preferred program

1) Conical shaft with threaded pin and woodruff key (DIN 6888). The torque must be transmitted via the tapered press fit.

-S

Ordering code for standard program

	A2F		0		/	6			-	V				
01	02	03	04	05		06	07	08		09	10	11	12	13

	Port plates for service lines ²⁾	5	10 to 16	23 to 250	355 to 1000					
	SAE flange port A/B at side and	_			_	05				
	SAE flange port S at rear	_	_	•	_	05				
12	Threaded port A/B at side and threaded port S at rear	-		-	-	06				
12	SAE flange ports A/B and S at rear	-	-	-	•	11				
	Threaded ports A/B and S at side		-	-	-	07				
	Standard / special version									
	Standard version (without code)									
13	Standard version with installation variants, e. g. T ports against standard open or closed									

Special version

 \bullet = Available

O = On request - = Not available

= Preferred program

2) Fastening thread or threaded ports, metric

Hydraulic fluid

Before starting project planning, please refer to our data sheets RE 90220 (mineral oil), RE 90221 (environmentally acceptable hydraulic fluids), RE 90222 (HFD hydraulic fluids) and RE 90223 (HFA, HFB, HFC hydraulic fluids) for detailed information regarding the choice of hydraulic fluid and application conditions.

The fixed pump A2FO is not suitable for operation with HFA hydraulic fluid. If HFB, HFC or HFD or environmentally acceptable hydraulic fluids are used, the limitations regarding technical data or other seals must be observed.

Selection diagram

Viscosity and temperature of hydraulic fluid

Details regarding the choice of hydraulic fluid

The correct choice of hydraulic fluid requires knowledge of the operating temperature in relation to the ambient temperature: in an open circuit, the reservoir temperature.

The hydraulic fluid should be chosen so that the operating viscosity in the operating temperature range is within the optimum range (v_{opt} see shaded area of the selection diagram). We recommended that the higher viscosity class be selected in each case.

Example: At an ambient temperature of X °C, an operating temperature of 60 °C is set in the circuit. In the optimum operating viscosity range ($v_{opt.}$, shaded area), this corresponds to the viscosity classes VG 46 or VG 68; to be selected: VG 68.

Note

The case drain temperature, which is affected by pressure and speed, can be higher than the reservoir temperature. At no point of the component may the temperature be higher than 115 °C. The temperature difference specified below is to be taken into account when determining the viscosity in the bearing.

If the above conditions cannot be maintained due to extreme operating parameters, we recommend flushing the case at port U (sizes 250 to 1000).

	Viscosity [mm ² /s]	Temperature	Comment
Transport and storage at ambient temperature		$T_{min} \ge -50 \ ^{\circ}C$ $T_{opt} = +5 \ ^{\circ}C \ to +20 \ ^{\circ}C$	factory preservation: up to 12 months with standard, up to 24 months with long-term
(Cold) start-up ¹⁾	v _{max} = 1600	$T_{St} \geq -40 \ ^{o}C$	$ \begin{split} t &\leq 3 \text{ min, without load } (p \leq 50 \text{ bar}), \\ n &\leq 1000 \text{ rpm (for sizes 5 to 200),} \\ n &\leq 0.25 \bullet n_{nom} \text{ (for sizes 250 to 1000)} \end{split} $
Permissible temperature	difference	$\Delta T \le 25 \text{ K}$	between axial piston unit and hydraulic fluid
Warm-up phase	$\nu <$ 1600 to 400	T = -40 °C to -25 °C	at $p \leq 0.7$ • $p_{nom},n \leq 0.5$ • n_{nom} and $t \leq 15$ min
Operating phase			
Temperature difference		$\Delta T = approx. 12 K$	between hydraulic fluid in the bearing and at port T.
Maximum temperature		115 °C	in the bearing
		103 °C	measured at port T
Continuous operation	v = 400 to 10 $v_{opt} = 36 \text{ to } 16$	T = -25 °C to +90 °C	measured at port T, no restriction within the permissible data
Short-term operation ²⁾	$v_{min} \ge 7$	T _{max} = +103 °C	measured at port T, t < 3 min, p < 0.3 \bullet p_{nom}
FKM shaft seal ¹⁾		T ≤ +115 °C	see page 5

1) At temperatures below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C).

2) Sizes 250 to 1000, please contact us.

Filtration of the hydraulic fluid

Finer filtration improves the cleanliness level of the hydraulic fluid, which increases the service life of the axial piston unit.

To ensure the functional reliability of the axial piston unit, a gravimetric analysis of the hydraulic fluid is necessary to determine the amount of solid contaminant and to determine the cleanliness level according to ISO 4406. A cleanliness level of at least 20/18/15 is to be maintained.

At very high hydraulic fluid temperatures (90 °C to maximum 115 °C), a cleanliness level of at least 19/17/14 according to ISO 4406 is necessary.

If the above classes cannot be achieved, please contact us.

Shaft seal

Permissible pressure loading

The service life of the shaft seal is influenced by the speed of the axial piston unit and the case drain pressure (case pressure). The mean differential pressure of 2 bar between the case and the ambient pressure may not be enduringly exceeded at normal operating temperature. For a higher differential pressure at reduced speed, see diagram. Momentary pressure spikes (t < 0.1 s) of up to 10 bar are permitted. The service life of the shaft seal decreases with an increase in the frequency of pressure spikes.

The case pressure must be equal to or higher than the ambient pressure.

Sizes 10 to 200

Sizes 250 to 1000

The values are valid for an ambient pressure $p_{abs} = 1$ bar.

Temperature range

The FKM shaft seal may be used for case drain temperatures from -25 $^{\circ}$ C to +115 $^{\circ}$ C.

Note

For application cases below -25 °C, an NBR shaft seal is required (permissible temperature range: -40 °C to +90 °C). State NBR shaft seal in plain text when ordering. Please contact us.

Direction of flow

Direction of rotation, viewed on drive shaft						
clockwise	counter-clockwise					
S to B	S to A					

Long-life bearing

Sizes 250 to 1000

For long service life and use with HF hydraulic fluids. Identical external dimensions as motor with standard bearings. Subsequent conversion to long-life bearings is possible. Bearing and case flushing via port U is recommended.

Flushing flow (recommended)

NG	250	355	500	710	1000
q _{v flush} (L/min)	10	16	16	16	16

Operating pressure range

(operating with mineral oil)

Pressure at service line port A or B

Size 5

Nominal pressure p _{nom}	315 bar absolute
Maximum pressure p _{max}	350 bar absolute
Single operating period	10 s
Total operating period	300 h

Sizes 10 to 200

Nominal pressure pnom	400 bar absolute
Maximum pressure p _{max}	450 bar absolute
Single operating period	10 s
Total operating period	300 h

Sizes 250 to 1000

Nominal pressure p _{nom}	350 bar absolute
Maximum pressure p _{max}	400 bar absolute
Single operating period	10 s

olingio operating period.	10	U
Total operating period _	300	h

Minimum pressure (high-pressure side) ____25 bar absolute

Rate of pressure change R_{A max} Without pressure-relief valve _____ 16000 bar/s

Definition

Nominal pressure pnom

The nominal pressure corresponds to the maximum design pressure.

Maximum pressure pmax

The maximum pressure corresponds to the maximum operating pressure within the single operating period. The sum of the single operating periods must not exceed the total operating period.

Minimum pressure (high-pressure side)

Minimum pressure at the high-pressure side (A or B) which is required in order to prevent damage to the axial piston unit.

Minimum pressure (inlet)

Minimum pressure at suction port S (inlet) which is required in order to prevent damage to the axial piston unit. The minimum pressure is dependent on the speed of the axial piston unit (see diagram on page 7).

Rate of pressure change R_A

Maximum permissible rate of pressure rise and reduction during a pressure change over the entire pressure range.

Total operating period = $t_1 + t_2 + ... + t_n$

Pressure at suction port S (inlet)

Minimum pressure p_{S min}_____ 0.8 bar absolute

Maximum pressure p_{S max} ______30 bar absolute

Note

Values for other hydraulic fluids, please contact us.

Tab	le of	valu	les	(theoretical	values,	without	efficiency	and	tolerances;	values	rounde	ed)
-----	-------	------	-----	--------------	---------	---------	------------	-----	-------------	--------	--------	-----

Size		NG		5	10	12	16	23	28	32	45	56	63	80
Displacement per revolution	geometric,	Vg	cm ³	4.93	10.3	12	16	22.9	28.1	32	45.6	56.1	63	80.4
Speed maxim	um ¹⁾	n _{nom}	rpm	5600	3150	3150	3150	2500	2500	2500	2240	2000	2000	1800
		n _{max} 2)	rpm	8000	6000	6000	6000	4750	4750	4750	4250	3750	3750	3350
Flow at n _{nom}		qv	L/min	27.6	32	38	50	57	70	80	102	112	126	145
Power at	$\Delta p = 350 \text{ bar}$	Р	kW	14.5 ⁴⁾	19	22	29	33	41	47	60	65	74	84
	$\Delta p = 400 \text{ bar}$	Р	kW	-	22	25	34	38	47	53	68	75	84	96
Torque ³⁾														
at V_g and	$\Delta p = 350 \text{ bar}$	Т	Nm	24.7 ⁴⁾	57	67	89	128	157	178	254	313	351	448
	$\Delta p = 400 \text{ bar}$	Т	Nm	-	66	76	102	146	179	204	290	357	401	512
Rotary stiffness	3	С	kNm/rad	0.63	0.92	1.25	1.59	2.56	2.93	3.12	4.18	5.94	6.25	8.73
Moment of ine	rtia for rotary group	J _{GR}	kgm ²	0.00006	0.0004	0.0004	0.0004	0.0012	0.0012	0.0012	0.0024	0.0042	0.0042	0.0072
Maximum ang	ular acceleration	α	rad/s ²	5000	5000	5000	5000	6500	6500	6500	14600	7500	7500	6000
Case volume		V	L		0.17	0.17	0.17	0.20	0.20	0.20	0.33	0.45	0.45	0.55
Mass (approx.)	m	kg	2.5	6	6	6	9.5	9.5	9.5	13.5	18	18	23
Size		NG		90	107	125	160	180	200	250	355	500	710	1000
Displacement	geometric,	Vg	cm ³	90	106.7	125	160.4	180	200	250	355	500	710	1000
Speed maxim	um ¹⁾	n _{nom}	rpm	1800	1600	1600	1450	1450	1550	1500	1320	1200	1200	950
Speed maxim	um ¹⁾	n _{nom} n _{max} ²⁾	rpm rpm	1800 3350	1600 3000	1600 3000	1450 2650	1450 2650	1550 2750	1500 1800	1320 1600	1200 1500	1200 1500	950 1200
Speed maxim Flow at n _{nom}	um ¹⁾	$rac{n_{nom}}{n_{max}^{2)}}$	rpm rpm L/min	1800 3350 162	1600 3000 171	1600 3000 200	1450 2650 233	1450 2650 261	1550 2750 310	1500 1800 375	1320 1600 469	1200 1500 600	1200 1500 852	950 1200 950
Speed maxim Flow at n _{nom} Power at	um ¹⁾ Δp = 350 bar	n _{nom} n _{max} ²⁾ q _V P	rpm rpm L/min kW	1800 3350 162 95	1600 3000 171 100	1600 3000 200 117	1450 2650 233 136	1450 2650 261 152	1550 2750 310 181	1500 1800 375 219	1320 1600 469 273	1200 1500 600 350	1200 1500 852 497	950 1200 950 554
Speed maxim Flow at n _{nom} Power at	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	$\frac{n_{nom}}{n_{max}^{2)}}$ $\frac{q_V}{P}$ P	rpm rpm L/min kW kW	1800 3350 162 95 108	1600 3000 171 100 114	1600 3000 200 117 133	1450 2650 233 136 155	1450 2650 261 152 174	1550 2750 310 181 207	1500 1800 375 219 -	1320 1600 469 273 -	1200 1500 600 350 -	1200 1500 852 497 -	950 1200 950 554 -
Speed maxim Flow at n _{nom} Power at Torque ³⁾	$um^{1)}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$	n _{nom} n _{max} ²⁾ qv P P	rpm rpm L/min kW kW	1800 3350 162 95 108	1600 3000 171 100 114	1600 3000 200 117 133	1450 2650 233 136 155	1450 2650 261 152 174	1550 2750 310 181 207	1500 1800 375 219 -	1320 1600 469 273 -	1200 1500 600 350 -	1200 1500 852 497 -	950 1200 950 554 -
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and	$um^{1)}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ $\Delta p = 350 \text{ bar}$	n _{nom} n _{max} ²⁾ qv P P T	rpm rpm L/min kW kW Nm	1800 3350 162 95 108 501	1600 3000 171 100 114 594	1600 3000 200 117 133 696	1450 2650 233 136 155 893	1450 2650 261 152 174 1003	1550 2750 310 181 207 1114	1500 1800 375 219 - 1393	1320 1600 469 273 - 1978	1200 1500 600 350 - 2785	1200 1500 852 497 - 3955	950 1200 950 554 - 5570
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	n _{nom} n _{max} ²⁾ qv P P P T T	rpm rpm L/min kW kW Nm Nm	1800 3350 162 95 108 501 573	1600 3000 171 100 114 594 679	1600 3000 200 117 133 696 796	1450 2650 233 136 155 893 1021	1450 2650 261 152 174 1003 1146	1550 2750 310 181 207 1114 1273	1500 1800 375 219 - 1393 -	1320 1600 469 273 - 1978 -	1200 1500 600 350 - 2785 -	1200 1500 852 497 - 3955 -	950 1200 950 554 - 5570 -
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and Rotary stiffness	$\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$	n _{nom} n _{max} ²⁾ q _V P P T T C	rpm rpm L/min kW kW kW Nm Nm kNm/rad	1800 3350 162 95 108 501 573 9.14	1600 3000 171 100 114 594 679 11.2	1600 3000 200 117 133 696 796 11.9	1450 2650 233 136 155 893 1021 17.4	1450 2650 261 152 174 1003 1146 18.2	1550 2750 310 181 207 1114 1273 57.3	1500 1800 375 219 - 1393 - 73.1	1320 1600 469 273 - 1978 - 96.1	1200 1500 600 350 - 2785 - 144	1200 1500 852 497 - 3955 - 270	950 1200 950 554 - 5570 - 324
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and Rotary stiffness Moment of ine	$um^{1)}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ s rtia for rotary group	n _{nom} n _{max} ²⁾ qv P P T T T C J _{GR}	rpm rpm L/min kW kW kW Nm Nm kNm/rad kgm ²	1800 3350 162 95 108 501 573 9.14 0.0072	1600 3000 171 100 114 594 679 11.2 0.0116	1600 3000 200 117 133 696 796 11.9 0.0116	1450 2650 233 136 155 893 1021 17.4 0.0220	1450 2650 261 152 174 1003 1146 18.2 0.0220	1550 2750 310 181 207 1114 1273 57.3 0.0353	1500 1800 375 219 - 1393 - 73.1 0.061	1320 1600 469 273 - 1978 - 96.1 0.102	1200 1500 600 350 - 2785 - 144 0,178	1200 1500 852 497 - 3955 - 270 0.55	950 1200 950 554 - 5570 - 324 0.55
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and Rotary stiffness Moment of ine Maximum ang	$um^{1)}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 350 \text{ bar}}{\Delta p = 400 \text{ bar}}$ $\frac{\Delta p = 400 \text{ bar}}{s}$ rtia for rotary group ular acceleration	$\frac{n_{nom}}{n_{max}^{2}}$ $\frac{q_V}{P}$ $\frac{P}{T}$ T T G J_{GR} α	rpm rpm L/min kW kW Nm Nm Nm kNm/rad kgm ² rad/s ²	1800 3350 162 95 108 501 573 9.14 0.0072 6000	1600 3000 171 100 114 594 679 11.2 0.0116 4500	1600 3000 200 117 133 696 796 11.9 0.0116 4500	1450 2650 233 136 155 893 1021 17.4 0.0220 3500	1450 2650 261 152 174 1003 1146 18.2 0.0220 3500	1550 2750 310 181 207 1114 1273 57.3 0.0353 11000	1500 1800 375 219 - 1393 - 73.1 0.061 10000	1320 1600 469 273 - 1978 - 96.1 0.102 8300	1200 1500 600 350 - 2785 - 144 0,178 5500	1200 1500 852 - 3955 - 270 0.55 4300	950 1200 950 554 - 5570 - 324 0.55 4500
Speed maxim Flow at n _{nom} Power at Torque ³⁾ at V _g and Rotary stiffness Moment of ine Maximum ang Case volume	$um^{1)}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ $\Delta p = 350 \text{ bar}$ $\Delta p = 400 \text{ bar}$ s rtia for rotary group ular acceleration	$\begin{array}{c} n_{nom} \\ n_{max}^{(2)} \\ q_V \\ P \\ P \\ P \\ T \\ T \\ C \\ J_{GR} \\ \alpha \\ V \end{array}$	rpm rpm L/min kW kW Nm Nm Nm kNm/rad kgm ² rad/s ² L	1800 3350 162 95 108 501 573 9.14 0.0072 6000 0.55	1600 3000 171 100 114 594 679 11.2 0.0116 4500 0.8	1600 3000 200 117 133 696 796 11.9 0.0116 4500 0.8	1450 2650 233 136 155 893 1021 17.4 0.0220 3500 1.1	1450 2650 261 152 174 1003 1146 18.2 0.0220 3500 1.1	1550 2750 310 181 207 1114 1273 57.3 0.0353 11000 2.7	1500 1800 375 219 - 1393 - 73.1 0.061 10000 2.5	1320 1600 469 273 - 1978 - 96.1 0.102 8300 3.5	1200 1500 600 350 - 2785 - 144 0,178 5500 4.2	1200 1500 852 497 - 3955 - 270 0.55 4300 8	950 1200 950 554 - 5570 - 324 0.55 4500 8

1) The values are valid:

- at an absolute pressure $p_{abs} = 1$ bar at suction port S
- for the optimum viscosity range from
- $v_{opt} = 16 \text{ to } 36 \text{ mm}^2/\text{s}$
- with hydraulic fluid based on mineral oils
- 2) Maximum speed (limiting speed) with increased inlet pressure p_{abs} at suction port S, see adjacent diagram.
- 3) Torque without radial force, with radial force see page 8
- 4) Torque at $\Delta p = 315$ bar

Note

Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Other permissible limit values, with respect to speed variation, reduced angular acceleration as a function of the frequency and the permissible start up angular acceleration (lower than the maximum angular acceleration) can be found in data sheet RE 90261.

Permissible radial and axial forces of the drive shafts

(splined shaft and parallel keyed shaft)

Size		NG		5	5 ³⁾	10	10	12	12	16	23	23
Drive shaft		Ø	mm	12	12	20	25	20	25	25	25	30
Maximum radial force ¹⁾ at distance a	ן Fq ר ∔ П	F _{q max}	kN	1.6	1.6	3.0	3.2	3.0	3.2	3.2	5.7	5.4
(from shaft collar)		а	mm	12	12	16	16	16	16	16	16	16
with permissible torque		T _{max}	Nm	24.7	24.7	66	66	76	76	102	146	146
≙ permissible pressure	Δρ	Δp_{perm}	bar	315	315	400	400	400	400	400	400	400
Maximum axial force ²⁾	∊╶╌╌╌	+F _{ax max}	Ν	180	180	320	320	320	320	320	500	500
		-F _{ax max}	N	0	0	0	0	0	0	0	0	0
Permissible axial force per ba	r operating pressure	$\pm F_{ax perm/bar}$	N/bar	1.5	1.5	3.0	3.0	3.0	3.0	3.0	5.2	5.2
Size		NG		28	28	32	45	56	56 ⁴⁾	56	63	80
Drive shaft		Ø	mm	25	30	30	30	30	30	35	35	35
Maximum radial force ¹⁾	_ ^F q _≠∏	F _{q max}	kN	5.7	5.4	5.4	7.6	9.5	7.8	9.1	9.1	11.6
(from shaft collar)		а	mm	16	16	16	18	18	18	18	18	20
with permissible torque		T _{max}	Nm	179	179	204	290	357	294	357	401	512
▲ permissible pressure	Δр	Δp_{perm}	bar	400	400	400	400	400	330	400	400	400
Maximum axial force ²⁾	- . M	+F _{ax max}	Ν	500	500	500	630	800	800	800	800	1000
	Fax±≓€∰	-F _{ax max}	Ν	0	0	0	0	0	0	0	0	0
Permissible axial force per ba	r operating pressure	±F _{ax perm/bar}	N/bar	5.2	5.2	5.2	7.0	8.7	8.7	8.7	8.7	10.6
				•								
Size		NG		80 ⁴⁾	80	90	107	107	125	160	160	180
Size Drive shaft		NG ø	mm	80 ⁴⁾ 35	80 40	90 40	107 40	107 45	125 45	160 45	160 50	180 50
Size Drive shaft Maximum radial force ¹⁾ at distance a	^{Fq} ∏	NG ø F _{q max}	mm kN	80 ⁴⁾ 35 11.1	80 40 11.4	90 40 11.4	107 40 13.6	107 45 14.1	125 45 14.1	160 45 18.1	160 50 18.3	180 50 18.3
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	Fq	NG Ø F _{q max} a	mm kN mm	80 ⁴⁾ 35 11.1 20	80 40 11.4 20	90 40 11.4 20	107 40 13.6 20	107 45 14.1 20	125 45 14.1 20	160 45 18.1 25	160 50 18.3 25	180 50 18.3 25
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque		NG Ø F _{q max} a T _{max}	mm kN mm	80 ⁴⁾ 35 11.1 20 488	80 40 11.4 20 512	90 40 11.4 20 573	107 40 13.6 20 679	107 45 14.1 20 679	125 45 14.1 20 796	160 45 18.1 25 1021	160 50 18.3 25 1021	180 50 18.3 25 1146
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure	Δp	NG Ø F _{q max} a T _{max} Δp perm	mm kN mm Nm bar	80 ⁴⁾ 35 11.1 20 488 380	80 40 11.4 20 512 400	90 40 11.4 20 573 400	107 40 13.6 20 679 400	107 45 14.1 20 679 400	125 45 14.1 20 796 400	160 45 18.1 25 1021 400	160 50 18.3 255 1021 400	180 50 18.3 25 1146 400
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure Maximum axial force ²⁾	Δp	NG Ø F _{q max} a T _{max} Δp perm +F _{ax max}	mm kN mm Nm bar N	80 ⁴⁾ 35 11.1 20 488 380 1000	80 40 11.4 20 512 400 1000	90 40 11.4 20 573 400 1000	107 40 13.6 20 679 400 1250	107 45 14.1 20 679 400 1250	125 45 14.1 20 796 400 1250	160 45 18.1 25 1021 400 1600	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure Maximum axial force ²⁾	$ \begin{array}{c} F_{q} \\ \hline a \\ \hline $	NG Ø F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max}	mm kN mm bar N N	80 ⁴⁾ 35 11.1 20 488 380 1000 0	80 40 11.4 20 512 400 1000 0	90 40 11.4 20 573 400 1000 0	107 40 13.6 20 679 400 1250 0	107 45 14.1 20 679 400 1250 0	125 45 14.1 20 796 400 1250 0	160 45 18.1 25 1021 400 1600 0	160 50 18.3 25 1021 400 1600	180 50 18.3 25 1146 400 1600 0
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure Maximum axial force ²⁾ Permissible axial force per ba	$\frac{F_{q}}{\Delta p}$ $F_{ax} \pm \pm \boxed{1}$ If the pressure of the pres	NG Ø Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar	mm kN mm bar Nm bar N N N	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6	80 40 11.4 20 512 400 1000 0 10.6	90 40 11.4 20 573 400 1000 0 10.6	107 40 13.6 20 679 400 1250 0 12.9	107 45 14.1 20 679 400 1250 0 12.9	125 45 14.1 20 796 400 1250 0 12.9	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size	$\frac{\Delta p}{F_{ax} \pm \pm \pm \frac{1}{2}}$	NG Ø F _{q max} a T _{max} Δp perm +F _{ax max} -F _{ax max} ±F _{ax perm/bar}	mm kN mm bar N N N N N N/bar	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200	80 40 11.4 20 512 400 1000 0 10.6 10.6	90 40 11.4 20 573 400 1000 0 10.6 355	107 40 13.6 20 679 400 1250 0 12.9 500	107 45 14.1 20 679 400 1250 0 1250 12.9	125 45 14.1 20 796 400 1250 0 12.9 12.9	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque ▲ permissible pressure Maximum axial force ²⁾ Permissible axial force per ba Size Drive shaft	$\frac{\Delta p}{F_{ax} \pm \pm \pm \frac{1}{2}}$	NG Ø Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar NG Ø	mm kN mm bar N N N N N N/bar mm	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50	80 40 11.4 20 512 400 1000 0 10.6 50	90 40 11.4 20 573 400 1000 0 10.6 355 60	107 40 13.6 20 679 400 1250 0 12.9 500 70	107 45 14.1 20 679 400 1250 0 12.9 710 90	125 45 14.1 20 796 400 1250 0 12.9 12.9 90	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per ba Size Drive shaft Maximum radial force ¹⁾ at distance a	$ \frac{Ap}{F_{ax} \pm \pm \pm \frac{F_{q}}{F_{q}}} $	NG Ø Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar NG Ø Fq max	mm kN mm bar N N N N N/bar M/bar kN	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3	80 40 11.4 20 512 400 1000 0 10.6 50 50 1.2 ⁶⁾	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾	107 40 13.6 20 679 400 1250 0 1250 0 12.9 500 70 1.9 ⁶⁾	107 45 14.1 20 679 400 1250 0 12.9 0 12.9 710 90 3.0 ⁶⁾	125 45 14.1 20 796 400 1250 0 12.9 12.9 90 2.6 ⁶⁾	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7 6.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar)	$\frac{F_{q}}{\Delta p}$ $F_{ax} \pm \pm \frac{F_{q}}{\Delta p}$ Ir operating pressure	NG Ø Fq max a Tmax Δp perm +Fax max -Fax max ±Fax perm/bar NG Ø Fq max a	mm kN mm bar N N N N/bar N/bar kN	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 50 20.3 25	80 40 11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	107 40 13.6 20 679 400 1250 0 12.9 500 70 1.9 ⁶⁾ 52.5	107 45 14.1 20 679 400 1250 0 12.9 90 3.06 ¹ 67.5	125 45 14.1 20 796 400 1250 0 12.9 90 2.6 ⁶⁾ 67.5	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque	$ \frac{P}{F_{ax} \pm \frac{P}{ax}} $ Ir operating pressure $ \frac{F_{q}}{F_{ax}} $	NG Ø Fq max a Δp perm +Fax max -Fax max dt Fax perm/bar NG Ø Fq max a	mm kN mm bar N N N N/bar M kN kN mm	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 50 20.3 25 1273	80 40 11.4 20 512 400 1000 0 10.6 50 1.2 ⁶ 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶ 52.5	107 40 13.6 20 679 400 1250 0 12.9 12.9 500 1.9 ⁶ 52.5	 107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0⁶ 67.5 5) 	125 45 14.1 20 796 400 1250 0 12.9 12.9 12.9 90 2.6 ⁶ 67.5	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible torque △ permissible pressure	Δp $F_{ax} \pm = \bigoplus$ $r operating pressure$ F_{q} Ap	NG Ø Fq max a Δp perm +Fax max -Fax max ±Fax perm/bar NG Ø fq max J A	mm kN mm bar N N N N kN kN kN mm kN mm kn kn	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 20.3 25 25 1273 400	80 40 11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5	107 40 13.6 20 679 400 1250 0 12.9 12.9 5 5 5 5) 5)	107 45 14.1 20 679 400 1250 0 12.9 710 3.0 ⁶ 3.0 ⁶ 67.5	125 45 14.1 20 796 400 1250 0 12.9 12.9 1000 90 2.6 ⁶) 67.5	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible torque △ permissible pressure Maximum axial force ²⁾	$ \frac{\Delta p}{F_{ax} \pm = \pm \frac{P_{q}}{P_{ax}}} $ $ \frac{\Delta p}{F_{ax} \pm = \pm \frac{P_{q}}{P_{ax}}} $	NG Ø Fq max a Δp perm +Fax max -Fax max ±Fax perm/bar MG Ø Fq max a Jap perm +Fax max -Fax max ±Fax perm/bar MG Ø Fq max a Tmax Δp perm +Fax max	mm kN mm bar N bar N N kN kN mm kN mm kN mm kN kN	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 20.3 25 25 1273 400 1600	80 40 11.4 20 512 400 1000 0 10.6 50 1.2 ⁶ 41 5) 5) 2000	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5 5) 5) 2500	107 40 13.6 20 679 400 1250 0 12.9 12.9 5 50 5 5 5 3000	107 45 14.1 20 679 400 1250 0 12.9 12.9 12.9 5 5 5 5 5 5 4400	125 45 14.1 20 796 400 1250 0 12.9 12.9 12.9 0 2.6 ⁶ 6 5 5 5 5 5 4400	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7	180 50 18.3 25 1146 400 1600 0 16.7
Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾ Permissible axial force per base Size Drive shaft Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum radial force ¹⁾ at distance a (from shaft collar) with permissible torque △ permissible pressure Maximum axial force ²⁾	$ \frac{\Delta p}{F_{ax} \pm \pm$	NG Ø Fq max a Δp perm +Fax max -Fax max ±Fax perm/bar NG Ø Fq max A -Fax max ±Fax perm/bar A Ø Fq max A Fq max A -Fax max -Fax max	mm kN mm bar N N N N kN kN kN kN kN kN kN kN kN kN k	80 ⁴⁾ 35 11.1 20 488 380 1000 0 10.6 200 20.3 25 25 1273 400 1600 0	80 40 11.4 20 512 400 1000 0 10.6 50 1.2 ⁶⁾ 41 5) 5) 2000 0	90 40 11.4 20 573 400 1000 0 10.6 355 60 1.5 ⁶⁾ 52.5 ⁵⁾ 2500 0	107 40 13.6 20 679 400 1250 0 12.9 12.9 5 50 5 5 5 5 5 3000 0	107 45 14.1 20 679 400 1250 0 12.9 710 90 3.0 ⁶⁾ 67.5 5) 5) 4400 0	125 45 14.1 20 796 400 1250 0 12.9 12.9 12.9 90 2.6 ⁶) 67.5 5) 5) 4400 0	160 45 18.1 25 1021 400 1600 0 16.7	160 50 18.3 25 1021 400 1600 0 16.7 400 16.7	180 50 18.3 25 1146 400 1600 0 16.7

1) With intermittent operation

2) Maximum permissible axial force during standstill or when the axial piston unit is operating in non-pressurized condition.

3) Conical shaft with threaded pin and woodruff key (DIN 6888)

4) Restricted technical data only for splined shaft

5) Please contact us.

pressurized conditions. Higher forces are permissible when under pressure, please contact us.

6) When at a standstill or when axial piston unit operating in non-

Note

Influence of the direction of the permissible axial force:

 $+F_{ax max}$ = Increase in service life of bearings

-F_{ax max} = Reduction in service life of bearings (avoid)

Effect of radial force F_{q} on the service life of bearings

By selecting a suitable direction of radial force F_q , the load on the bearings, caused by the internal rotary group forces can be reduced, thus optimizing the service life of the bearings. Recommended position of mating gear is dependent on direction of rotation. Examples:

	Toothed gear drive V-belt output		
NG	φ _{opt} .	φ _{opt} .	
5 to 180	± 70°	± 45°	
200 to 1000	± 45°	± 70°	

Determining the operating characteristics

$$q_{v} = \frac{V_{g} \cdot n \cdot \eta_{v}}{1000} \qquad [L/min]$$

Torque

Flow

 $T = \frac{V_{g} \cdot \Delta p}{20 \cdot \pi \cdot \eta_{mh}}$ [Nm]

Power
$$P = \frac{2 \pi \cdot T \cdot n}{60000} = \frac{q_v \cdot \Delta p}{600 \cdot \eta_t} [kW]$$

- V_g = Displacement per revolution in cm³
- $\Delta p = Differential pressure in bar$
- n = Speed in rpm
- η_v = Volumetric efficiency
- η_{mh} = Mechanical-hydraulic efficiency
- η_t = Total efficiency ($\eta_t = \eta_v \bullet \eta_{mh}$)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 07 - Threaded ports A/B and S at side

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Drive shafts

Ports

Designation	Port for	Standard ⁶⁾	Size ³⁾	Maximum pressure [bar] ⁵⁾	State ⁷⁾
B (A)	Service line	DIN 3852	M18 x 1.5; 12 deep	350	0
S	Suction line	DIN 3852	M22 x 1.5; 14 deep	30	0
T ₁	Drain line	DIN 3852	M10 x 1; 8 deep	3	0
T ₂	Drain line	DIN 3852	M10 x 1; 8 deep	3	0

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

- 4) Thread according to DIN 3852, maximum tightening torque: 30 Nm
- 5) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.
- 6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 10, 12, 16

Port plate 06 – Threaded port A/B at side and threaded port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 10, 12, 16

Drive shafts

Ports

Designation	Port for	Standard ⁵⁾	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁶⁾
B (A)	Service line	DIN 3852	M22 x 1.5; 14 deep	450	0
S	Suction line	DIN 3852	M33 x 2; 18 deep	30	0
T ₁	Drain line	DIN 3852	M12 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852	M12 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852	M8 x 1; 8 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) The spot face can be deeper than specified in the appropriate standard.

6) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 23, 28, 32

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 23, 28, 32

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁵⁾ DIN 13	1/2 in M8 x 1.25; 15 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁵⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M16 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M10 x 1; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

ISO 3019-2

Dimensions size 45

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

<u>4</u>50

 \bigotimes

 \bigotimes

150

13.5

150

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

View Y

45°

Ø

 \otimes

6

1) To shaft collar

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁵⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁵⁾ DIN 13	1 in M10 x 1.5; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 56, 63

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 56, 63

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁵⁾ DIN 13	3/4 in M10 x 1.5; 17 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁵⁾ DIN 13	1 in M10 x 1.5; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 80, 90

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 80, 90

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁵⁾ DIN 13	1 in M12 x 1.5; 17 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/4 in M10 x 1.5; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M12 x 1.5; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 107, 125

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 107, 125

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line	SAE J518 ⁵⁾	1 in (size 107) 1 1/4 in (size 125)	450	0
	Fastening thread B/A	DIN 13	M12 x 1.75; 17 deep (size 107) M14 x 2; 19 deep (size 125)		
S	Suction line	SAE J5185 ⁾	1 1/2 in	30	0
	Fastening thread	DIN 13	M12 x 1.75; 20 deep		
T ₁	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M18 x 1.5; 12 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M14 x 1.5; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Dimensions sizes 160, 180

Port plate 05 – SAE flange port A/B at side and SAE flange port S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Dimensions sizes 160, 180

Drive shafts

Ports

Designation	Port for	Standard	Size ²⁾	Maximum pressure [bar] ³⁾	State ⁷⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁵⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/2 in M12 x 1.75; 20 deep	30	0
T ₁	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	X ⁴⁾
T ₂	Drain line	DIN 3852 ⁶⁾	M22 x 1.5; 14 deep	3	O ⁴⁾
R	Air bleed	DIN 3852 ⁶⁾	M14 x 1.5; 12 deep	3	Х

1) Center bore according to DIN 332 (thread according to DIN 13)

2) Observe the general instructions on page 34 for the maximum tightening torques.

3) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

4) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

5) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

6) The spot face can be deeper than specified in the appropriate standard.

7) O = Must be connected (plugged on delivery)

X = Plugged (in normal operation)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	450	0
S	Suction line Fastening thread	SAE J518 ⁶⁾ DIN 13	3 1/2 in M16 x 2; 24 deep	30	0
T ₁	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
R	Air bleed	DIN 38527)	M14 x 1.5; 12 deep	3	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

- 6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.
- 7) The spot face can be deeper than specified in the appropriate standard.
- 8) O = Must be connected (plugged on delivery)

Port plate 05 - SAE flange port A/B at side and SAE flange port S at rear

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Ports

49

58

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁶⁾ DIN 13	1 1/4 in M14 x 2; 19 deep	400	0
S	Suction line Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M22 x 1.5; 14 deep	3	X ⁵⁾
U	Bearing flushing	DIN 38527)	M14 x 1.5; 12 deep	3	Х

82

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) The spot face can be deeper than specified in the appropriate standard.

8) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear

Detail Y

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁶⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
S	Suction line Fastening thread	SAE J518 ⁶⁾ DIN 13	2 1/2 in M12 x 1.75; 17 deep	30	0
T ₁	Drain line	DIN 3852 ⁷⁾	M33 x 2; 18 deep	3	O ⁵⁾
T ₂	Drain line	DIN 38527)	M33 x 2; 18 deep	3	X ⁵⁾
U	Bearing flushing	DIN 38527)	M14 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Х
Ms	Measuring suction pressure	DIN 38527)	M14 x 1.5; 12 deep	30	Х

1) To shaft collar

Center bore according to DIN 332 (thread according to DIN 13) 2)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

The spot face can be deeper than specified in the appropriate standard. 7)

O = Must be connected (plugged on delivery) 8)

375

Dimensions size 500

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Drive shafts

Ζ

M20x2.5²⁾³

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line fastening thread B/A	SAE J518 ⁶⁾ DIN 13	1 1/2 in M16 x 2; 21 deep	400	0
S	Suction line fastening thread	SAE J518 ⁶⁾ DIN 13	3 in M16 x 2; 24 deep	30	0
T ₁	Drain line	DIN 38527)	M33 x 2; 18 deep	3	O ⁵⁾
T ₂	Drain line	DIN 38527)	M33 x 2; 18 deep	3	X ⁵⁾
U	Bearing flushing	DIN 38527)	M18 x 1.5; 12 deep	3	Х
M_A, M_B	Operating pressure measurement	DIN 38527)	M14 x 1.5; 12 deep	400	Х
Ms	Suction pressure measurement	DIN 38527)	M14 x 1.5; 12 deep	30	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) The spot face can be deeper than specified in the appropriate standard.

8) O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding installation drawing. Dimensions in mm.

Port plate 11 - SAE flange ports A/B and S at rear

Illustration: cw direction of rotation (on version "ccw direction of rotation" the port plate is rotated through 180°)

Drive shafts

Detail Y

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line Fastening thread B/A	SAE J518 ⁶⁾ DIN 13	2 in M20 x 2.5; 30 deep	400	
S	Suction line Fastening thread	SAE J518 ⁶⁾ DIN 13	4 in M16 x 2; 24 deep	30	0
T ₁	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	O ⁵⁾
T ₂	Drain line	DIN 3852 ⁷⁾	M42 x 2; 20 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	400	Х
Ms	Measuring suction pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	30	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) The spot face can be deeper than specified in the appropriate standard.

O = Must be connected (plugged on delivery)

Before finalizing your design, request a binding

Ports

Designation	Port for	Standard	Size ³⁾	Maximum pressure [bar] ⁴⁾	State ⁸⁾
B (A)	Service line	SAE J518 ⁶⁾	2 in M20 x 2 5: 30 doop	400	
9	Suction line	SAE 15186)	1 in	30	0
0	fastening thread	DIN 13	M16 x 2; 24 deep	50	0
T ₁	Drain line	DIN 38527)	M42 x 2; 20 deep	3	O ⁵⁾
T ₂	Drain line	DIN 38527)	M42 x 2; 20 deep	3	X ⁵⁾
U	Bearing flushing	DIN 3852 ⁷⁾	M18 x 1.5; 12 deep	3	Х
M _A , M _B	Measuring operating pressure	DIN 38527)	M14 x 1.5; 12 deep	400	Х
Ms	Measuring suction pressure	DIN 3852 ⁷⁾	M14 x 1.5; 12 deep	30	Х

1) To shaft collar

2) Center bore according to DIN 332 (thread according to DIN 13)

3) Observe the general instructions on page 34 for the maximum tightening torques.

4) Momentary pressure spikes may occur depending on the application. Keep this in mind when selecting measuring devices and fittings.

5) Depending on installation position, T₁ or T₂ must be connected (see also installation instructions on pages 32 and 33).

6) Only dimensions according to SAE J518, metric fastening thread is a deviation from standard.

7) The spot face can be deeper than specified in the appropriate standard.

8) O = Must be connected (plugged on delivery)

Installation instructions

General

During commissioning and operation, the axial piston unit must be filled with hydraulic fluid and air bled. This must also be observed following a relatively long standstill as the axial piston unit may drain back to the reservoir via the hydraulic lines.

Particularly in the installation position "drive shaft upwards" filling and air bleeding must be carried out completely as there is, for example, a danger of dry running.

The case drain fluid in the motor housing must be directed to the reservoir via the highest available drain port (T_1, T_2) .

For combinations of multiple units, make sure that the respective case pressure in each unit is not exceeded. In the event of pressure differences at the drain ports of the units, the shared drain line must be changed so that the minimum permissible case pressure of all connected units is not exceeded in any situation. If this is not possible, separate drain lines must be laid if necessary.

To achieve favorable noise values, decouple all connecting lines using elastic elements and avoid above-reservoir installation.

In all operating conditions, the suction and drain lines must flow into the reservoir below the minimum fluid level. The permissible suction height h_S results from the overall loss of pressure; it must not, however, be higher than $h_{S max} = 800$ mm. The minimum suction pressure at port S must also not fall below 0.8 bar absolute during operation and during cold start.

Installation position

See the following examples 1 to 8. Further installation positions are possible upon request.

Recommended installation positions: 1 and 2.

Below-reservoir installation (standard)

Below-reservoir installation means that the axial piston unit is installed outside of the reservoir below the minimum fluid level.

Installation position	Air bleed	Filling
1	-	T ₁
2	-	T ₂
3	-	T ₁
4	R (U)	T ₂

Installation instructions

Above-reservoir installation

Above-reservoir installation means that the axial piston unit is installed above the minimum fluid level of the reservoir.

Recommendation for installation position 8 (drive shaft upward): A check valve in the drain line (cracking pressure 0.5 bar) can prevent draining of the pump housing.

Installation position	Air bleed	Filling
5	L ₁	T ₁ (L ₁)
6	L ₁	T ₂ (L ₁)
7	L ₁	T ₁ (L ₁)
8	R (U)	T ₂ (L ₁)

- L1 Filling / air bleed
- R Air bleed port
- U Bearing flushing / air bleed port
- S Suction port
- T1, T2 Drain port
- ht min Minimum required immersion depth (200 mm)
- h_{min} Minimum required spacing to reservoir bottom (100 mm)
- **SB** Baffle (baffle plate)
- h_{S max} Maximum permissible suction height (800 mm)
- a_{min} When designing the reservoir, ensure adequate space between the suction line and the drain line. This prevents the heated, return flow from being drawn directly back into the suction line.

General instructions

- The pump A2FO is designed to be used in open circuits.
- The project planning, installation and commissioning of the axial piston unit requires the involvement of qualified personnel.
- Before using the axial piston unit, please read the corresponding instruction manual completely and thoroughly. If necessary, these can be requested from Bosch Rexroth.
- During and shortly after operation, there is a risk of burns on the axial piston unit. Take appropriate safety measures (e. g. by wearing protective clothing).
- Depending on the operating conditions of the axial piston unit (operating pressure, fluid temperature), the characteristic may shift.
- Service line ports:
 - The ports and fastening threads are designed for the specified maximum pressure. The machine or system manufacturer must ensure that the connecting elements and lines correspond to the specified application conditions (pressure, flow, hydraulic fluid, temperature) with the necessary safety factors.
 - The service line ports and function ports can only be used to accommodate hydraulic lines.

- The data and notes contained herein must be adhered to.
- The product is not approved as a component for the safety concept of a general machine according to ISO 13849.
- A pressure-relief valve is to be fitted in the hydraulic system.
- The following tightening torques apply:
 - Fittings:

Observe the manufacturer's instructions regarding tightening torques of the fittings used.

- Mounting bolts:

For mounting bolts with metric ISO thread according to DIN 13 or with thread according to ASME B1.1, we recommend checking the tightening torque in individual cases in accordance with VDI 2230.

- Female threads in the axial piston unit: The maximum permissible tightening torques M_{G max} are maximum values for the female threads and must not be exceeded. For values, see the following table.
- Threaded plugs:

For the metallic threaded plugs supplied with the axial piston unit, the required tightening torques of threaded plugs M_V apply. For values, see the following table.

Ports Standard	Size of thread	Maximum permissible tightening torque of the female threads M _{G max}	Required tightening torque of the threaded plugs Mv ¹⁾	WAF hexagon socket in the threaded plugs
DIN 3852	M8 x 1	10 Nm	7 Nm	3 mm
	M10 x 1	30 Nm	15 Nm ²⁾	5 mm
	M12 x 1.5	50 Nm	25 Nm ²⁾	6 mm
	M14 x 1.5	80 Nm	35 Nm	6 mm
	M16 x 1.5	100 Nm	50 Nm	8 mm
	M18 x 1.5	140 Nm	60 Nm	8 mm
	M22 x 1.5	210 Nm	80 Nm	10 mm
	M33 x 2	540 Nm	225 Nm	17 mm
	M42 x 2	720 Nm	360 Nm	22 mm

The tightening torques apply for screws in the "dry" state as received on delivery and in the "lightly oiled" state for installation.
 In the "lightly oiled" state, the M_V is reduced to 10 Nm for M10 x 1 and 17 Nm for M12 x 1.5.

Bosch Rexroth AG Mobile Applications Glockeraustrasse 4 An der 89275 Elchingen, Germany 72160 Tel.: +49-7308-82-0 Tel.: +4 Fax: +49-7308-72-74 Fax: + info.brm@boschrexroth.de www.boschrexroth.com/axial-piston-pumps

An den Kelterwiesen 14 72160 Horb, Germany Tel.: +49-7451-92-0 Fax: +49-7451-82-21 © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Subject to change.